Neurocomputational Dynamics of Sequence Learning
نویسندگان
چکیده
منابع مشابه
A Neurocomputational Model of Automatic Sequence Production
Most behaviors unfold in time and include a sequence of submovements or cognitive activities. In addition, most behaviors are automatic and repeated daily throughout life. Yet, relatively little is known about the neurobiology of automatic sequence production. Past research suggests a gradual transfer from the associative striatum to the sensorimotor striatum, but a number of more recent studie...
متن کاملNeurocomputational mechanisms of prosocial learning and links to empathy.
Reinforcement learning theory powerfully characterizes how we learn to benefit ourselves. In this theory, prediction errors-the difference between a predicted and actual outcome of a choice-drive learning. However, we do not operate in a social vacuum. To behave prosocially we must learn the consequences of our actions for other people. Empathy, the ability to vicariously experience and underst...
متن کاملA Neurocomputational Model of Nicotine Addiction Based on Reinforcement Learning
Continuous exposure to nicotine causes behavioral choice to be modified by dopamine to become rigid, resulting in addiction. In this work, a computational model for nicotine addiction is proposed and the proposed model captures the effect of continuous nicotine exposure in becoming addict through reinforcement learning. The computational model is composed of three subsystems each corresponding ...
متن کاملInstructional control of reinforcement learning: a behavioral and neurocomputational investigation.
Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of be...
متن کاملNeurocomputational mechanisms of reinforcement-guided learning in humans: a review.
Adapting decision making according to dynamic and probabilistic changes in action-reward contingencies is critical for survival in a competitive and resource-limited world. Much research has focused on elucidating the neural systems and computations that underlie how the brain identifies whether the consequences of actions are relatively good or bad. In contrast, less empirical research has foc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2018
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2018.05.013